PMID: 10861371 , Related PDB id: 1BP8
Authors:
Keniry MA, Owen EA, Shafer RH
Title:
The three-dimensional structure of the 4:1 mithramycin:d(ACCCGGGT)(2) complex: evidence for an interaction between the E saccharides.
Journal:
Biopolymers. 2000 Aug;54(2):104-14.
Abstract:
Mithramycin and chromomycin, two antitumor drugs, each having an identical aglycone and nearly identical disaccharide and trisaccharide side chains, have differing binding properties to a small oligonucleotide, d(ACCCGGGT)(2) (M. A. Keniry et al., Journal of Molecular Biology, 1993, Vol. 231, pp. 753-767). In order to understand the forces that induce four mithramycin molecules to bind to d(ACCCGGGT)(2) instead of two drug molecules in the case of chromomycin, the structure of the 4:2:1 mithramycin: Mg(2+):d(ACCCGGGT)(2) complex was investigated by (1)H-nmr and restrained molecular dynamics. The resulting three-dimensional model showed that in order to accommodate the close approach of one neighboring mithramycin dimer, the inwardly directed CDE saccharide chain of the neighboring mithramycin dimer undergoes a conformational change such that the E saccharide no longer spans the minor groove but reorients so that the hydrophilic face of the E saccharides from the two dimers oppose each other. Two hydrogen bonds are formed between the hydroxyl groups of the two opposing E saccharide groups. The results are interpreted in terms of the differences in stereochemistry and functional group substitutions between mithramycin and chromomycin. A mithramycin dimer is able to self-associate on an oligonucleotide template because it has two hydroxyl groups on the same face of its terminal E saccharide. A chromomycin dimer is unable to self-associate because one of these hydroxyl groups is acetylated and the neighboring hydroxyl group has a stereochemistry that cannot permit close contact of the hydroxyl group with a neighbouring chromomycin dimer.Copyright 2000 John Wiley & Sons, Inc.