PMID: 11859376 , Related PDB ids: 1JWF, 1JWG
Authors:
Shiba T, Takatsu H, Nogi T, Matsugaki N, Kawasaki M, Igarashi N, Suzuki M, Kato R, Earnest T, Nakayama K, Wakatsuki S
Title:
Structural basis for recognition of acidic-cluster dileucine sequence by GGA1.
Journal:
Nature. 2002 Feb 21;415(6874):937-41.
Abstract:
GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-interacting proteins) are critical for the transport of soluble proteins from the trans-Golgi network (TGN) to endosomes/lysosomes by means of interactions with TGN-sorting receptors, ADP-ribosylation factor (ARF), and clathrin. The amino-terminal VHS domains of GGAs form complexes with the cytoplasmic domains of sorting receptors by recognizing acidic-cluster dileucine (ACLL) sequences. Here we report the X-ray structure of the GGA1 VHS domain alone, and in complex with the carboxy-terminal peptide of cation-independent mannose 6-phosphate receptor containing an ACLL sequence. The VHS domain forms a super helix with eight alpha-helices, similar to the VHS domains of TOM1 and Hrs. Unidirectional movements of helices alpha6 and alpha8, and some of their side chains, create a set of electrostatic and hydrophobic interactions for correct recognition of the ACLL peptide. This recognition mechanism provides the basis for regulation of protein transport from the TGN to endosomes/lysosomes, which is shared by sortilin and low-density lipoprotein receptor-related protein.