PMID: 15128951 , Related PDB ids: 1SVK, 1SVS
Thomas CJ, Du X, Li P, Wang Y, Ross EM, Sprang SR
Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein alpha-subunit.
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7560-5. Epub 2004 May 5.
Heterotrimeric G protein alpha (G alpha) subunits possess intrinsic GTPase activity that leads to functional deactivation with a rate constant of approximately 2 min(-1) at 30 degrees C. GTP hydrolysis causes conformational changes in three regions of G alpha, including Switch I and Switch II. Mutation of G202-->A in Switch II of G alpha(i1) accelerates the rates of both GTP hydrolysis and conformational change, which is measured by the loss of fluorescence from Trp-211 in Switch II. Mutation of K180-->P in Switch I increases the rate of conformational change but decreases the GTPase rate, which causes transient but substantial accumulation of a low-fluorescence G alpha(i1).GTP species. Isothermal titration calorimetric analysis of the binding of (G202A)G alpha(i1) and (K180P)G alpha(i1) to the GTPase-activating protein RGS4 indicates that the G202A mutation stabilizes the pretransition state-like conformation of G alpha(i1) that is mimicked by the complex of G alpha(i1) with GDP and magnesium fluoroaluminate, whereas the K180P mutation destabilizes this state. The crystal structures of (K180P)G alpha(i1) bound to a slowly hydrolyzable GTP analog, and the GDP.magnesium fluoroaluminate complex provide evidence that the Mg(2+) binding site is destabilized and that Switch I is torsionally restrained by the K180P mutation. The data are consistent with a catalytic mechanism for G alpha in which major conformational transitions in Switch I and Switch II are obligate events that precede the bond-breaking step in GTP hydrolysis. In (K180P)G alpha(i1), the two events are decoupled kinetically, whereas in the native protein they are concerted.