PMID: 15858169 , Related PDB ids: 1WS7, 1WS8
Authors:
Xie Y, Inoue T, Miyamoto Y, Matsumura H, Kataoka K, Yamaguchi K, Nojini M, Suzuki S, Kai Y
Title:
Structural reorganization of the copper binding site involving Thr15 of mavicyanin from Cucurbita pepo medullosa (zucchini) upon reduction.
Journal:
J Biochem. 2005 Apr;137(4):455-61.
Abstract:
Mavicyanin, a glycosylated protein isolated from Cucurbita pepo medullosa (zucchini), is a member of the phytocyanin subfamily containing one polypeptide chain of 109 amino residues and an unusual type-I Cu site in which the copper ligands are His45, Cys86, His91, and Gln96. The crystal structures of oxidized and reduced mavicyanin were determined at 1.6 and 1.9 A resolution, respectively. Mavicyanin has a core structure of seven polypeptide beta-strands arranged as a beta-sandwich organized into two beta-sheets, and the structure considerably resembles that of stellacyanin from cucumber (CST) or cucumber basic protein (CBP). A flexible region was not observed on superimpositioning of the oxidized and reduced mavicyanin structures. However, the Cu(II)-epsilon-O-Gln96 bond length was extended by 0.47 A, and the Thr15 residue was rotated by 60.0 degrees and O-gamma1-Thr15 moved from a distance of 4.78 to 2.58 A from the ligand Gln96 forming a new hydrogen bond between O-gamma1-Thr15 and epsilon-O-Gln96 upon reduction. The reorganization of copper coordination geometry of mavicyanin upon reduction arouses reduction potential decreased above pH 8 [Battistuzzi et al. (2001) J. Inorg. Biochem. 83, 223-227]. The rotation of Thr15 and the hydrogen bonding with the ligand Gln96 may constitute structural evidence of the decrease in the reduction potential at high pH.