PMID: 17491010 , Related PDB ids: 2HQN, 2HQO, 2HQR, 2PLN
Hong E, Lee HM, Ko H, Kim DU, Jeon BY, Jung J, Shin J, Lee SA, Kim Y, Jeon YH, Cheong C, Cho HS, Lee W
Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism.
J Biol Chem. 2007 Jul 13;282(28):20667-75. Epub 2007 May 9.
Two-component signal transduction systems, commonly found in prokaryotes, typically regulate cellular functions in response to environmental conditions through a phosphorylation-dependent process. A new type of response regulator, hp1043 (HP-RR) from Helicobacter pylori, has been recently identified. HP-RR is essential for cell growth and does not require the well known phosphorelay scheme. Unphosphorylated HP-RR binds specifically to its own promoter (P(1043)) and autoregulates the promoter of the tlpB gene (P(tlpB)). We have determined the structure of HP-RR by NMR and x-ray crystallography, revealing a symmetrical dimer with two functional domains. The molecular topology resembles that of the OmpR/PhoB subfamily, however, the symmetrical dimer is stable even in the unphosphorylated state. The dimer interface, formed by three secondary structure elements (alpha4-beta5-alpha5), resembles that of the active, phosphorylated forms of ArcA and PhoB. Several conserved residues of the HP-RR dimeric interface deviate from the OmpR/PhoB subfamily, although there are similar salt bridges and hydrophobic patches within the interface. Our findings reveal how a new type of response regulator protein could function as a cell growth-associated regulator in the absence of post-translational modification.