PMID: 22380629 , Related PDB ids: 3VEU, 3VF3, 3VG1, 4D83, 4D85, 4D88, 4D89, 4D8C
Rueeger H, Lueoend R, Rogel O, Rondeau JM, Mobitz H, Machauer R, Jacobson L, Staufenbiel M, Desrayaud S, Neumann U
Discovery of cyclic sulfone hydroxyethylamines as potent and selective beta-site APP-cleaving enzyme 1 (BACE1) inhibitors: structure-based design and in vivo reduction of amyloid beta-peptides.
J Med Chem. 2012 Apr 12;55(7):3364-86. Epub 2012 Mar 21.
Structure-based design of a series of cyclic hydroxyethylamine BACE1 inhibitors allowed the rational incorporation of prime- and nonprime-side fragments to a central core template without any amide functionality. The core scaffold selection and the structure-activity relationship development were supported by molecular modeling studies and by X-ray analysis of BACE1 complexes with various ligands to expedite the optimization of the series. The direct extension from P1-aryl- and heteroaryl moieties into the S3 binding pocket allowed the enhancement of potency and selectivity over cathepsin D. Restraining the design and synthesis of compounds to a physicochemical property space consistent with central nervous system drugs led to inhibitors with improved blood-brain barrier permeability. Guided by structure-based optimization, we were able to obtain highly potent compounds such as 60p with enzymatic and cellular IC(50) values of 2 and 50 nM, respectively, and with >200-fold selectivity over cathepsin D. Pharmacodynamic studies in APP51/16 transgenic mice at oral doses of 180 mumol/kg demonstrated significant reduction of brain Abeta levels.