PMID: 22561545
Authors:
de Val N, Declercq JP, Lim CK, Crichton RR
Title:
Structural analysis of haemin demetallation by L-chain apoferritins.
Journal:
J Inorg Biochem. 2012 Mar 9;112C:77-84.
Abstract:
There are extensive structural similarities between eukaryotic and prokaryotic ferritins. However, there is one essential difference between these two types of ferritins: bacterioferritins contain haem whereas eukaryotic ferritins are considered to be non-haem proteins. In vitro experiments had shown that horse spleen apoferritin or recombinant horse L chain apoferritins, when co-crystallised with haemin, undergoes demetallation of the porphyrin. In the present study a cofactor has been isolated directly from horse spleen apoferritin and from crystals of the mutant horse L chain apoferritin (E53Q, E56Q, E57Q, E60Q and R59M) which had been co-crystallised with haemin. In both cases the HPLC/ESI-MS results confirm that the cofactor is a N-ethylprotoporphyrin IX. Crystal structures of wild type L chain horse apoferritin and its three mutants co-crystallised with haemin have been determined to high resolution and in all cases a metal-free molecule derived from haemin was found in the hydrophobic pocket, close to the two-fold axis. The X-ray structure of the E53Q, E56Q, E57Q, E60Q+R59M recombinant horse L-chain apoferritin has been obtained at a higher resolution (1.16A) than previously reported for any mammalian apoferritins. Similar evidence for a metal-free molecule derived from haemin was found in the electron density map of horse spleen apoferritin (at a resolution of 1.5A). The out-of-plane distortion of the observed porphyrin is clearly compatible with an N-alkyl porphyrin. We conclude that L-chain ferritins are capable of binding and demetallating haemin, generating in the process N-ethylprotoporphyrin IX both in vivo and in vitro.