PMID: 26283200 , Related PDB id: 4ZBM
Authors:
Lam YL, Zeng W, Derebe MG, Jiang Y
Title:
Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide-gated channels.
Journal:
J Gen Physiol. 2015 Aug 17. pii: jgp.201511431.
Abstract:
Calcium permeability and the concomitant calcium block of monovalent ion current ("Ca2+ block") are properties of cyclic nucleotide-gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca2+ block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca2+ block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca2+ block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca2+ block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca2+ block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca2+ block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca2+ block.