PMID: 26305976 , Related PDB id: 2N5T
Authors:
Venditti V, Schwieters CD, Grishaev A, Clore GM
Title:
Dynamic equilibrium between closed and partially closed states of the bacterial Enzyme I unveiled by solution NMR and X-ray scattering.
Journal:
Proc Natl Acad Sci U S A. 2015 Aug 24. pii: 201515366.
Abstract:
Enzyme I (EI) is the first component in the bacterial phosphotransferase system, a signal transduction pathway in which phosphoryl transfer through a series of bimolecular protein-protein interactions is coupled to sugar transport across the membrane. EI is a multidomain, 128-kDa homodimer that has been shown to exist in two conformational states related to one another by two large (50-90 degrees ) rigid body domain reorientations. The open conformation of apo EI allows phosphoryl transfer from His189 located in the N-terminal domain alpha/beta (EINalpha/beta) subdomain to the downstream protein partner bound to the EINalpha subdomain. The closed conformation, observed in a trapped phosphoryl transfer intermediate, brings the EINalpha/beta subdomain into close proximity to the C-terminal dimerization domain (EIC), thereby permitting in-line phosphoryl transfer from phosphoenolpyruvate (PEP) bound to EIC to His189. Here, we investigate the solution conformation of a complex of an active site mutant of EI (H189A) with PEP. Simulated annealing refinement driven simultaneously by solution small angle X-ray scattering and NMR residual dipolar coupling data demonstrates unambiguously that the EI(H189A)-PEP complex exists in a dynamic equilibrium between two approximately equally populated conformational states, one corresponding to the closed structure and the other to a partially closed species. The latter likely represents an intermediate in the open-to-closed transition.