PMID: 27648635
Authors:
Masanari M, Fujii S, Kawahara K, Oki H, Tsujino H, Maruno T, Kobayashi Y, Ohkubo T, Wakai S, Sambongi Y
Title:
Comparative study on stabilization mechanism of monomeric cytochrome c5 from deep-sea piezophilic Shewanella violacea.
Journal:
Biosci Biotechnol Biochem. 2016 Dec;80(12):2365-2370. Epub 2016 Sep 20.
Abstract:
Monomeric cytochrome c5 from deep-sea piezophilic Shewanella violacea (SVcytc5) was stable against heat and denaturant compared with the homologous protein from shallow-sea piezo-sensitive Shewanella livingstonensis (SLcytc5). Here, the SVcytc5 crystal structure revealed that the Lys-50 side chain on the flexible loop formed a hydrogen bond with heme whereas that of corresponding hydrophobic Leu-50 could not form such a bond in SLcytc5, which appeared to be one of possible factors responsible for the difference in stability between the two proteins. This structural insight was confirmed by a reciprocal mutagenesis study on the thermal stability of these two proteins. As SVcytc5 was isolated from a deep-sea piezophilic bacterium, the present comparative study indicates that adaptation of monomeric SVcytc5 to high pressure environments results in stabilization against heat.