PMID: 29279395 , Related PDB id: 5NFY
Authors:
Ferron F, Subissi L, Silveira De Morais AT, Le NTT, Sevajol M, Gluais L, Decroly E, Vonrhein C, Bricogne G, Canard B, Imbert I
Title:
Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA.
Journal:
Proc Natl Acad Sci U S A. 2017 Dec 26. pii: 1718806115. doi:, 10.1073/pnas.1718806115.
Abstract:
Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes ( approximately 30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 A resolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.