PMID: 30050988
Jarva M, Phan TK, Lay FT, Caria S, Kvansakul M, Hulett MD
Human beta-defensin 2 kills Candida albicans through phosphatidylinositol 4,5-bisphosphate-mediated membrane permeabilization.
Sci Adv. 2018 Jul 25;4(7):eaat0979. doi: 10.1126/sciadv.aat0979. eCollection 2018, Jul.
Human defensins belong to a subfamily of the cationic antimicrobial peptides and act as a first line of defense against invading microbes. Their often broad-spectrum antimicrobial and antitumor activities make them attractive for therapeutic development; however, their precise molecular mechanism(s) of action remains to be defined. We show that human beta-defensin 2 (HBD-2) permeabilizes Candida albicans cell membranes via a mechanism targeting the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the structure of HBD-2 bound to PIP2, which revealed two distinct PIP2-binding sites, and showed, using functional assays, that mutations in these sites ablate PIP2-mediated fungal growth inhibition by HBD-2. Our study provides the first insight into lipid-mediated human defensin membrane permeabilization at an atomic level and reveals a unique mode of lipid engagement to permeabilize cell membranes.