PMID: 32912999
Authors:
Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H, Kurumizaka H
Title:
Structural basis for the inhibition of cGAS by nucleosomes.
Journal:
Science. 2020 Sep 10. pii: science.abd0237. doi: 10.1126/science.abd0237.
Abstract:
The cyclic GMP-AMP synthase (cGAS) senses invasion of pathogenic DNA and stimulates inflammatory signaling, autophagy and apoptosis. Organization of host DNA into nucleosomes was proposed to limit cGAS autoinduction, but the underlying mechanism was unknown. Here, we report the structural basis for this inhibition. In the cryo-EM structure of the human cGAS-nucleosome core particle (NCP) complex, two cGAS monomers bridge two NCPs by binding the acidic patch of H2A-H2B and nucleosomal DNA. In this configuration, all three known cGAS DNA-binding sites, required for cGAS activation, are repurposed or become inaccessible, and cGAS dimerization, another prerequisite for activation, is inhibited. Mutating key residues linking cGAS and the acidic patch alleviates nucleosomal inhibition. This study establishes a structural framework for why cGAS is silenced on chromatinized self-DNA.