PMID: 7608974
Authors:
West AH, Martinez-Hackert E, Stock AM
Title:
Crystal structure of the catalytic domain of the chemotaxis receptor methylesterase, CheB.
Journal:
J Mol Biol. 1995 Jul 7;250(2):276-90.
Abstract:
Signaling activity of bacterial chemotaxis transmembrane receptors is modulated by reversible covalent modification of specific receptor glutamate residues. The level of receptor methylation results from the activities of a specific S-adenosylmethionine-dependent methyltransferase, CheR, and the CheB methylesterase, which catalyzes hydrolysis of receptor glutamine or methylglutamate side-chains to glutamic acid. The CheB methylesterase belongs to a large family of response regulator proteins in which N-terminal regulatory domains control the activities of C-terminal effector domains. The crystal structure of the catalytic domain of the Salmonella typhimurium CheB methylesterase has been determined at 1.75 A resolution. The domain has a modified, doubly wound alpha/beta fold in which one of the helices is replaced by an anti-parallel beta-hairpin. Previous biochemical and mutagenesis data, suggest that the methylester hydrolysis catalyzed by CheB proceeds through a mechanism involving a serine nucleophile. The methylesterase active site is tentatively identified as a cleft at the C-terminal edge of the beta-sheet containing residues Ser164, His190 and Asp286. The three-dimensional fold, and the arrangement of residues within the catalytic triad distinguishes the CheB methylesterase from any previously described serine protease or serine hydrolase.