PMID: 7643402 , Related PDB id: 1HYH
Niefind K, Hecht HJ, Schomburg D
Crystal structure of L-2-hydroxyisocaproate dehydrogenase from Lactobacillus confusus at 2.2 A resolution. An example of strong asymmetry between subunits.
J Mol Biol. 1995 Aug 11;251(2):256-81.
L-2-Hydroxyisocaproate dehydrogenase (L-HicDH) from Lactobacillus confusus, a homotetramer with a molecular mass of 33 kDa per subunit, belongs to the protein family of the NAD(+)-dependent L-2-hydroxycarboxylate dehydrogenases. L-HicDH was crystallized with ammonium sulphate as precipitant in the presence of NAD+. The crystals belong to the trigonal space group P3(2)21, with a = 135.9 A and c = 205.9 A, and diffract X-rays to 2.2 A resolution. The crystal structure was solved by Patterson search and molecular replacement techniques and refined to an R-value of 21.4% (2.2 to 8 A). The final structure model contains one NAD+ molecule and one sulphate ion per subunit, with 309 water molecules. An unusual feature of this crystal structure is the deviation of the protein subunits from non-crystallographic symmetry, which is so strong that it can be detected globally by self-rotation calculations in reciprocal space. This asymmetry is especially pronounced in the environment of the active site; it is reflected also in the nicotinamide conformation of NAD+ and allows some conclusions to be drawn about the catalytic mechanism. In this context, an "inner active site loop" is identified as a structural element of fundamental functional importance. Furthermore, with knowledge of the crystal structure of L-HicDH the differences in substrate specificity between L-HicDH and the L-lactate dehydrogenases can be partly explained.