PMID: 9568905 , Related PDB id: 2ORC
Authors:
Mossing MC
Title:
Solution structure and dynamics of a designed monomeric variant of the lambda Cro repressor.
Journal:
Protein Sci. 1998 Apr;7(4):983-93.
Abstract:
The solution structure of a monomeric variant of the lambda Cro repressor has been determined by multidimensional NMR. Cro K56[DGEVK] differs from wild-type Cro by the insertion of five amino acids at the center of the dimer interface. 1H and 15N resonances for 70 of the 71 residues have been assigned. Thirty-two structures were calculated by hybrid distance geometry/simulated annealing methods using 463 NOE-distance restraints, 26 hydrogen-bond, and 39 dihedral-angle restraints. The root-mean-square deviation (RMSD) from the average structure for atoms in residues 3-60 is 1.03 +/- 0.44 A for the peptide backbone and 1.6 +/- 0.73 A for all nonhydrogen atoms. The overall structure conforms very well to the original design. Although the five inserted residues form a beta hairpin as expected, this engineered turn as well as other turns in the structure are not well defined by the NMR data. Dynamics studies of backbone amides reveal T1/T2 ratios of residues in the alpha2-alpha3, beta2-beta3, and engineered turn that are reflective of chemical exchange or internal motion. The solution structure and dynamics are discussed in light of the conformational variation that has been observed in other Cro structures, and the importance of flexibility in DNA recognition.