PMID: 9836577 , Related PDB id: 1NT3
Authors:
Butte MJ, Hwang PK, Mobley WC, Fletterick RJ
Title:
Crystal structure of neurotrophin-3 homodimer shows distinct regions are used to bind its receptors.
Journal:
Biochemistry. 1998 Dec 1;37(48):16846-52.
Abstract:
Neurotrophin-3 (NT-3) is a cystine knot growth factor that promotes the survival, proliferation, and differentiation of developing neurons and is a potential therapeutic for neurodegenerative diseases. To clarify the structural basis of receptor specificity and the role of neurotrophin dimerization in receptor activation, the structure of the NT-3 homodimer was determined using X-ray crystallography. The orthorhombic crystals diffract to 2.4 A, with dimer symmetry occurring about a crystallographic 2-fold axis. The overall structure of NT-3 resembles that of the other neurotrophins, NGF and BDNF; each protomer forms a twisted four-stranded beta sheet, with three intertwined disulfide bonds. There are notable differences, however, between NT-3 and NGF in the surface loops and in three functionally important regions, shown in previous mutagenesis studies to be critical for binding. One such difference implies that NT-3's binding affinity and specificity depend on a novel hydrogen bond between Gln 83, a residue important for binding specificity with TrkC, and Arg 103, a residue crucial for binding affinity with TrkC. NT-3's extensive dimer interface buries much of the otherwise solvent-accessible hydrophobic surface area and suggests that the dimeric state is stabilized through the formation of this hydrophobic core. A comparison of the dimer interface between the NT-3 homodimer and the BDNF/NT-3 heterodimer reveals similar patterns of hydrogen bonds and nonpolar contacts, which reinforces the notion that the evolutionarily conserved neurotrophin interface resulted from the need for receptor dimerization in signal initiation.