PMID: 22619329 , Related PDB ids: 4EUT, 4EUU
Ma X, Helgason E, Phung QT, Quan CL, Iyer RS, Lee MW, Bowman KK, Starovasnik MA, Dueber EC
Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9378-83. Epub 2012 May 22.
Tank-binding kinase (TBK)1 plays a central role in innate immunity: it serves as an integrator of multiple signals induced by receptor-mediated pathogen detection and as a modulator of IFN levels. Efforts to better understand the biology of this key immunological factor have intensified recently as growing evidence implicates aberrant TBK1 activity in a variety of autoimmune diseases and cancers. Nevertheless, key molecular details of TBK1 regulation and substrate selection remain unanswered. Here, structures of phosphorylated and unphosphorylated human TBK1 kinase and ubiquitin-like domains, combined with biochemical studies, indicate a molecular mechanism of activation via transautophosphorylation. These TBK1 structures are consistent with the tripartite architecture observed recently for the related kinase IKKbeta, but domain contributions toward target recognition appear to differ for the two enzymes. In particular, both TBK1 autoactivation and substrate specificity are likely driven by signal-dependent colocalization events.